RHIC Machine Performance in Run 7

- Introduction: a ramp
- Expectations and goals for Run 7
- Overview of Machine Performance
 - machine setup
 - machine ramp up
 - physics operation
- Conclusions

Introduction:

A "typical" ramp with Au-Au

- Typically some early losses
- Most losses around transition (intensity dependend)
- Some losses of bunched beam with rebucketing
- Physics begins after rebucketing
- Transmission efficiency is crucial for performance!

Expectations and Goals for Run-7

- Do better than Run-4
- Increase number of bunches to 111
- Reach 60% time at store on average
- Reach avg. luminosity/store
 - > 8 10²⁶ cm-2 s-1 routinely
- Reach peak luminosity/store
 - \sim > 30 10²⁶ cm-1 s-1
- Increase bunch intensity

Machine Setup: maximize number of bunches

- □ Total setup time was 5 weeks
- Only 2 weeks from both rings being cold
- □ 2 weeks lost on cryo problem
- □ Only 4 days to reach 90% ramp efficiency
- Reached 111 (max. possible number!) bunches after 2 weeks of physics operation
- Physics declared Mar 26^{th} with 51 bunches and $L_{peak} = 14 \ 10^{26} \ s^{-1} cm^{-2}$
- □ Already higher performance than last week of Run-4 with 45 bunches and $L_{peak} = 11 \cdot 10^{26}$ cm⁻² s⁻¹!

Scrubbing at the beginning of the run to reach higher bunch numbers

- Before we could go for higher bunch numbers:
- Pressure bump moves from IR12 to IR4
- Pressure bump reduces after 4th high intensity injection
- Spend a total of 2 hours

A. Drees
DOE RHIC S\$T review

Total Bunch Number reduced to 103: why?

- beam losses along the bunch train (next slide)
- Rebucketing issues: debunching beam
- Could we go to higher intensity/bunch?

Total Bunch Number reduced to 103: why?

Losses along the bunch train

1o3 Std.

103 f.g.

- 103 std. ramp (1.15) shows beam blow up in all late bunches (ramp failed)
- Next 103 fg ramp with same bunch intensity (1.17) worked
- Gap pattern clearly visible in 8837
- 103 f.g. set to be default, eliminated rebucketing problem
- Clearly indicates vacuum issue!

Expectations and Goals for Run-7

- Do better than Run-4
- Increase number of bunches to 111
- Reach 60% <u>time at store</u> on average
- Reach avg. luminosity/store
 - > 8 10²⁶ cm-2 s-1 routinely
- Reach peak luminosity/store
 - \sim > 30 10²⁶ cm-1 s-1
- Increase bunch intensity

Example of a good week (May 14-May 20)

A. Drees
DOE RHIC S\$T review

yel bunched

blu bunched

bluDCCT

yelDCCT

above 120 109

Example of a bad week May 28 – Jun 3

Time between newfill and accramp (turn-around indicator)

Time at store over the years

- Data included until Jun 9th 2007
- Goal: 60%
- Reached 46%
- Failed to reach goal by about 15%
- Beam induced quenches not correlated with uptime but species
 => magnet current

A. Drees
DOE RHIC S\$T review

Failures in hours for Run-7 system by system

- Run-7 had
 - 13 weeks total with 3250 μb⁻¹ delivered per experiment
 - Postponed start date to late spring: temperature issues
 - full magnetic field/current Au@100 GeV vs. p@100 GeV
 - Equipment aging?
 - Manpower?
- □ Top 3: Power supplies (PS), cryo, RHIC RF
- Increase factors (from previous run to this run)

■ PS: x2.2

RF: x2.5

Cryo: x4.5

Run 7 Failures by system

Expectations and Goals for Run-7

- Do better than Run-4
- Increase number of bunches to 111
- Reach 60% time at store on average
- Reach avg. luminosity/store
 - $> 8 \ 10^{26} \ cm^{-2} \ s^{-1} \ routinely$
- Reach peak luminosity/store
 - \sim > 30 10²⁶ cm⁻¹ s⁻¹
- Increase bunch intensity

Run7 average luminosity highest with 103 bunches/ring

Stochastic Cooling (Yellow only)

- Stochastic (longitudinal) cooling was commissioned and made operational for the 2nd half of the run
- Increased luminosity lifetime
- More beam in the center bucket (next slide)
- Yellow beam decay reduced to "burn off rate"
- Net-effect on integrated luminosity 10%-20% (analysis not yet finished), PHENIX indicates an average 16% effect

A. Drees
DOE RHIC S\$T review

Stochastic Cooling (contd.)

Blue beam uncooled cooled

- Uncooled beam has larger width of center bucket
- Cooled beam has significantly pronounced center and satellite buckets
- Exp. recorded luminosity benefited from prolonged luminosity lifetime as well as more beam in the central bucket (vertex cut!)
 A. Drees

DOE RHIC S\$T review

Expectations and Goals for Run-7

- Do better than Run-4
- Increase number of bunches to 111
- Reach 60% time at store on average
- Reach avg. luminosity/store
 - > 8 10²⁶ cm-2 s-1 routinely
- Reach peak luminosity/store
 - \sim > 30 10²⁶ cm-1 s-1
- Increase bunch intensity

Bunch Intensity at Injection

Ramp Efficiency

Integrated Au-Au Luminosity Run-7

- Luminosity corrected for accidental collisions (due to high collision rate)
- Slope change after experimental magnets polarity flip
- Last week better again (recovery? Coincidence?)
- Integrated luminosity reaches ~90% of most optimistic projection!

Week-by-week integrated luminosity Run 7

maintenance days

A. Drees
DOE RHIC S\$T review

- Bi-weekly pattern in early run
- 3 weeks above 300 µb⁻¹
- Even with reduced reliability we delivered about 90% or our most optimisitc predictions for Run-7
- How did we do that?
 - Machine reproducibility was very high ☺
 - We exceeded the goal avg. luminosity/store by 50%! ©
 - Stochastic cooling contributed more than expected ©

Expectations and Goals for Run-7

Do better than Run-4;)

 \odot

Increase number of bunches to 111

 \odot

■ Reach 60% time at store on average

no

■ Reach avg. luminosity/store

 \odot

- > 8 10²⁶ cm-2 s-1 routinely
- Reach peak luminosity/store

 \odot

- \sim > 30 10²⁶ cm-1 s-1
- Increase bunch intensity

Conclusions

- 3250 μb⁻¹/exp. delivered in 13 weeks, 90% eff. Reached in 4 days, low energy setup in 24 h
- We met and exceeded our goals:
 - 111 (103) bunches: 2.3 x Run-4
 - Achieved > 12 10²⁶ cm⁻² s⁻¹ avg. luminosity/store routinely: 2-3 x Run-4
 - > 30 10²⁶ cm⁻¹ s⁻¹ peak luminosity, 2-2.5 x Run-4
 - Some weeks (3!) exceeded 300 ub⁻¹ integrated luminosity
 - Achieved integrated luminosity: 2-3 x Run-4 (delivered vs. recorded)
- Bunch intensity limit (~1.2 10⁹) reached
- Up-time or reliability needs significant changes:
 - Plans for next year (short shutdown!)
 - Long-term plans
- Stochastic Cooling concept worked better than expected (10-20% gain)

DOE RHIC S\$T review

Conclusions

□ 3250 μb⁻¹/exp. delivered in 13 weeks, 90% eff.

Run-7	FY2007	0.8 (1.1?)	111	1.1	15-40	30	10-14	200-400
Run-4	FY2004	1	45	1.1	15-40	15	5	160
Run-2	FY2001/02	1	55	0.5	15-40	3.7	1.5	24
enhanced design		1	111	1.0	15-40	30	8	300
design		2	55	1.0	15-40	9	2	50
		(m)	bunches	10^{9}	$(\pi \text{ mm mrad})$	$(10^{26} {\rm cm}$	$n^{-2}s^{-1}$)	(μb^{-1})
run	year	$\beta*$	no. of	ions/bunch	$\epsilon_{x,y}^{norm}$.	\mathcal{L}_{peak}	$\mathcal{L}_{avg.}$	\mathcal{L}_{week}

We not only reached but exceeded our enhanced design goals as well as reaching ~ 90% of our most optimistic projections!